Programming Sensor Networks Made Easy *

Mahesh Arumugam and Sandeep S. Kulkarni

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering
Michigan State University, East Lansing MI 48824

Email: {arumugam, sandeep}@cse.msu.edu
Web: http://www.cse.msu.edu/~{arumugam, sandeep}

Abstract. The designer of a sensor network protocol needs to address
several low-level details such as message collisions, message losses, and
resource limitations. Also, the designer needs to solve several high-level
problems such as routing, leader election, and diffusing computation that
are already considered in distributed systems and traditional networking.
Therefore, to simplify the design of sensor network protocols, in this
paper, we propose ProSe, a programming tool for sensor networks that
enables the following: (i) specify programs in simple abstract models
considered in distributed systems literature while hiding low-level details,
(ii) reuse existing algorithms in the context of sensor networks, and (iii)
automate code generation and deployment. Furthermore, ProSe helps
in rapid prototyping and quick deployment of sensor networks. Finally,
ProSe enables the transition where protocols are designed by domain
experts rather than experts in sensor networks.

Keywords: programming abstraction, programming tool, code-
generation, write-all-with-collision model, sensor networks

1 Introduction

Sensor networks have become popular recently due to their applications in unat-
tended tracking and detection of undesirable objects, hazard detection, data
gathering, environment monitoring, and so on. Due to their low cost and small
size, it is easy to deploy them in large numbers. However, these sensors are
constrained by limited power, limited memory and limited communication capa-
bility. Hence, they need to collaborate with each other to perform a certain task.
Additionally, due to limited power, to sustain the network for longer duration,
methods for power management are necessary. Also, since the sensors typically

* Addr: 3115 Engineering Building, Michigan State University, East Lansing MI 48824.
Tel: +1-517-353-2387. Fax: +1-517-432-1061. This work was partially sponsored
by NSF CAREER CCR-0092724, DARPA Grant OSURS01-C-1901, ONR Grant
N00014-01-1-0744, NSF Equipment Grant EIA-0130724, and a grant from Michigan
State University.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2005 2. REPORT TYPE 00-00-2005 to 00-00-2005
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Programming Sensor Networks M ade Easy £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Michigan State Univer sity,Department of Computer Science and REPORT NUMBER
Engineering,East Lansing,M1,48824

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 18
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

communicate over a single frequency, if multiple messages are sent to a sensor
simultaneously then, due to collision, it receives none. For these reasons, the
designer of a sensor network protocol needs to deal with several mostly low-level
details such as message collision, limited memory, and limited power.

The designer of a sensor network protocol also has to solve several high-level
problems that are considered in distributed systems and traditional network-
ing. These include variations of consensus, routing, spanning tree construction,
leader election, clock synchronization, and tracking. Therefore, to speed up the
development and deployment of sensor networks, it is desirable to utilize the vast
literature in this area in such a way that the low-level details of sensor networks
are hidden from the designer.

One challenge in using existing algorithms is that the model considered in
these algorithms does not account for the difficulties and opportunities pro-
vided by sensor networks. For example, in most existing sensors (e.g., Mica/XSM
motes [1,2]), the basic mode of communication is local broadcast with collision.
In other words, when a sensor communicates, it can update the state of its neigh-
bors. However, if a sensor receives 2 messages simultaneously then they collide
and both messages become incomprehensible. Thus, the computation in sensor
networks can be thought of as a write all with collision (WAC) model [3,4].
By contrast, existing algorithms assume point-to-point communication and are
mostly written in abstract models considered in distributed systems literature.
These abstract models allow the designer to specify the program concisely by
hiding several low-level details. (For a brief introduction of these abstract mod-
els, we refer the reader to Section 2.) Hence, to reuse existing programs (i.e.,
algorithms) in the context of sensor networks, these programs need to be trans-
formed into programs in WAC model.

Contributions of the paper. With this motivation, we develop ProSe, a tool
for programming sensor networks. The main features of ProSe are as follows.

— Hide low-level details. ProSe allows the designer of a sensor network pro-
tocol to specify programs in abstract models (e.g., shared-memory model,
read/write model) considered in distributed systems literature. Programs
written in such abstract models hide several low-level details, e.g., message
collision, synchronization, resource limitations, etc. The transformation al-
gorithm [3,4] used to transform a program into WAC model deals with such
issues. Therefore, the designer can concentrate only on the functional as-
pects of the program. As a result, the development time of a sensor network
protocol is significantly reduced.

— Reuse existing algorithms. ProSe allows the designer to reuse existing al-
gorithms considered in the distributed systems literature. Since (variations
of) problems such as consensus, routing, leader election, synchronization,
and tracking are already addressed in distributed systems and traditional
networking, reusing them in the context of sensor networks simplifies the
design of sensor network protocols. Towards this end, ProSe enables rapid
prototyping and quick deployment of sensor network protocols.

— Automate code generation and deployment. ProSe takes the input program
written in an abstract model and automatically transforms it into a program
in WAC model. Then, ProSe generates code for the transformed program
that can be implemented on sensor networks. Currently, ProSe is targeted for
nesC/TinyOS [5,6] platform. Once code is generated, ProSe uses the native
tools of the platform to construct the binary image and then can disseminate
the new binary across the network using a network programming service
(e.g., [7-9]). Thus, ProSe allows the designer to automatically generate and
deploy code.

Unlike manually designed protocols where the designer has to deal with sev-
eral low-level details in addition to the functionalities of the protocol, ProSe
allows the designer to rapidly prototype protocols and analyze the performance
quickly. Additionally, if the transformation algorithm [3,4] preserves the proper-
ties of interest (e.g., fault-tolerance, stabilization [10,11]) of the original program,
then ProSe also preserves such properties in the generated code.

Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we discuss how programs are specified in different computation
models and briefly summarize the transformation algorithms proposed for WAC
model. Then, in Section 3, we present an overview of the tool. Subsequently, in
Section 4, we evaluate the performance of the tool. Specifically, we show that the
programs generated by the tool provide comparable performance with respect
to related programs designed manually for sensor networks. In Section 5, we
discuss some of the questions raised by this work and in Section 6, we discuss
the related work. Finally, in Section 7, we make the concluding remarks and
present the scope for future research.

2 Preliminaries

In this section, we present the theoretical background on which our tool is
based. We first precisely specify the structure of the programs written in shared-
memory, read/write, or WAC models. Then, we discuss some of the results in
transforming programs in shared-memory or read/write models into programs

in WAC model.

2.1 Structure of Programs

The programs are specified in terms of guarded commands [12]; each guarded
command (respectively, action) is of the form:

guard — statement,
where guard is a predicate over program variables, and statement updates

program variables. An action ¢ — st is enabled when g evaluates to true and
to execute that action, st is executed. A computation of this program consists

of a sequence Sg, S1, ..., where s;4; is obtained from s; by executing actions in
the program (0 < j).

A computation model limits the variables that an action can read and write.
Towards this end, we split the program actions into a set of processes. Each
action is associated with one of the processes in the program. We now describe
how we model the restrictions imposed by shared-memory, read/write and WAC
models.

Shared-memory model. In this model, in one atomic step, a sensor can
read its state as well as the state of its neighbors and write its own (public and
private) variables.

Read/Write model. In this model, in one atomic step, a sensor can either
(1) read the state of one of its neighbors and update its private variables, or (2)
write its own variables.

Write all with collision (WAC) model. In this model, each sensor consists
of write actions (to be precise, write-all actions). Specifically, in one atomic
action, a sensor can update its own state and the state of all its neighbors.
However, if two or more sensors simultaneously try to update the state of a
sensor, say k, then the state of k£ remains unchanged. Thus, this model captures
the fact that a message sent by a sensor is broadcast. But, if multiple messages
are sent to a sensor simultaneously then, due to collision, it receives none.

Remark. In this paper, we use the terms process and sensor interchangeably.

2.2 Transformations for WAC Model

The WAC model can be effectively used to model computations in sensor net-
works. Recently, approaches have been proposed for transforming programs into
WAC model. They can be classified as: (a) TDMA based deterministic transfor-
mation [3] and (b) CSMA based probabilistic transformation [4].

TDMA based deterministic transformation. In [3], Kulkarni and Aru-
mugam have proposed algorithms for transforming programs written in read /write
model into programs in WAC model. In the transformations proposed in [3], the
action by which a process (say, j) reads the state of process k in read/write
model is modeled in WAC model by requiring process k to write the appropriate
value at process j. However, if another neighbor of j is trying to write the state
of j at the same time then, due to collision, none of the write actions succeed.
In order to deal with this problem, in [3], time division multiple access (TDMA)
is used to ensure that collisions do not occur during write actions.

In short, in WAC model, each process executes the actions for which the
corresponding guard is enabled in the TDMA slots assigned to that process.
And, each process writes (broadcasts) its state to all its neighbors in its TDMA
slots. Furthermore, if the transformation uses a deterministic TDMA service to
implement the write-all action, the resulting program in WAC model is also de-

terministic. Additionally, in [3], the authors propose extensions for transforming
programs written in shared-memory model into programs in WAC model.

CSMA based probabilistic transformation. In [4], Herman proposed
cached sensor transform (CST) that allows one to correctly simulate a program
written for shared-memory model in sensor networks. CST uses CSMA to broad-
cast the state of a sensor and, hence, the transformed program is randomized.
We note that ProSe allows the designer of a sensor network protocol to use
either of these transformations. Additionally, the developers of new transforma-
tion algorithm for WAC model can easily incorporate their algorithm in ProSe,
thereby, enhancing the library of transformations available with ProSe.

3 ProSe: Overview

In this section, we present an overview of ProSe. Specifically, we discuss (1) the
programming architecture of ProSe, (2) the input and output of ProSe, and (3)
the execution sequence of ProSe.

3.1 Programming Architecture of ProSe

The programming architecture of ProSe is shown in Figure 1. ProSe transforms
the input guarded command program into a program in WAC model (if the input
program is specified in shared-memory or read/write model), as discussed in
Section 2.2. Once the input guarded command program is transformed into WAC
model, ProSe generates the corresponding nesC code (targeted for TinyOS).
Furthermore, ProSe wires the generated code with a MAC layer (e.g., [13,14])
to implement the write-all action in the WAC model. Such a service is useful in
providing an interface for broadcasting (i.e., writing all neighbors) and receiving
WAC messages.

Now, the designer of the sensor network protocol can use the TinyOS platform
to build the binary of the nesC code. This binary image can then be disseminated
across the network using a network programming service (e.g., [7-9]). Thus,
sensor network protocols and applications can be specified and disseminated
across the network.

3.2 Input/Output of ProSe

The input to ProSe consists of the guarded command program in shared-memory,
read/write, or WAC model, its initial states and the topology of the network.
In the input guarded command program, the designer has to specify whether
a variable is public or private. In shared-memory or read/write model, a sensor
can read the public variables of its neighbors. Also, the designer has to identify
the process (or sensor) to which the variable belongs. For example, if process j

Input guarded Prose: Transform program p into WAC /

command program p, i i
topology fﬁe, and other | model, generate code and binary nesC/TinyOS binary

user input

Disseminate new program
using protocols such as
MNP, Infuse, Deluge, etc

Deployed sensor node Deployed sensor node
Generated Program: Generated Program:
sensor network application and sensor network application and
protocols (e.g., routing, protocols (e.g., routing,
dissemination, tracking, etc) dissemination, tracking,) | oo
MAC Layer: MAC Layer:
providesinterface for sending provides interface for sending
& receiving WAC messages & receiving WAC messages
Physical Layer Physical Layer

i L

wireless network

Fig. 1. ProSe programming architecture

accesses its local variable x, the designer has to specify it as z.j. Now, we discuss
the input/output of ProSe in the context of an example.

Max program. In this program (MAX), each process (i.e., sensor) maintains a
public variable x. The goal of the program is to eventually identify the maximum
value of this variable across the network.

In MAX, whenever z.j is less than x.k (i.e., variable z at process k), j copies
x.k to xz.j. This action allows j to update x.j whenever its guard holds and,
thus, j eventually computes the maximum value of = across the network. In the
input file of ProSe, we specify the actions of j as follows (keywords are shown
in italics):

1 program max
2 process j

3 var public int x.3j;

1 begin

5 (x.k > x.3) > x.j = x.k;
6 end

Initial state. The designer also specifies initial state in the input of ProSe. The
initial state of the MAX program is as follows (init is a keyword):

1ot x.j = 3;

In the above example, x.j is initialized to j (i.e., the ID of the sensor).

Topology file. Another input to ProSe is the topology file. This file identifies
the ID of the base station, the size of the network, and the communication

topology (i.e., the neighborhood of each sensor). The communication topology
is modeled as a directed graph. Each vertex represents a sensor node. Also, the
topology identifies the packet reception rate (PRR) across each edge (or link).
This can be determined using the information about the expected bit error rate
across each edge and the network field characteristics. Additionally, PRR can be
calculated from real data using a localization service (e.g., [15]) on the deployed
network. Moreover, ProSe supports shortcuts for specific network topologies. For
example, if the communication topology is a grid then it is sufficient to specify
GRID instead of listing all the edges. In the topology file, we specify these
parameters as follows:

1 baselD: 1
2 size: 10
3 neighborhood: 1:2:0.95, 2:1:0.93, 1:3:0.91, 1:4:0.97,

In the above example, the base station ID is 1 and the size of the network is
10. The keyword neighborhood identifies the communication topology. The link
1:2:0.95 denotes that sensor 1 can successfully communicate with sensor 2 95%
of the time. Based on this information, the tool and the MAC layer used in the
transformation compute the neighborhood of each sensor.

User interaction. Next, ProSe queries the user for the transformation algorithm
and the MAC layer. Note that ProSe is not designed for a specific transformation
algorithm or MAC layer. Rather, ProSe can be extended to work with different
transformation algorithms and MAC layers. It maintains a library of transfor-
mation algorithms and MAC layer implementations. Based on the user input,
it transforms the input program using the appropriate transformation and the
MAC layer. The ProSe-user interaction is shown in Figure 2.

Developer of sensor
network protocol

ProSe: Library

1. Available

transformations Transformation Other parameters, as needed
2. Available & agorithm, MAC layer | to configure servicesin
permitted MAQ ProSe library

layersfor each

transformation

ProSe: User interface

Fig. 2. ProSe-user interaction

If the user selects a TDMA based transformation (respectively, CSMA based
transformation) then ProSe configures the TDMA (respectively, CSMA) service
using the information provided in the topology file.

Output nesC program. ProSe generates the code for the input guarded command
program in nesC as follows. As mentioned in Section 2.2, the read action in

shared-memory or read /write model is simulated in WAC model using the write-
all action. Towards this end, each sensor maintains a copy vector for each public
variable of its neighbor. This copy vector captures the value of the corresponding
variable at its neighbors. The number of elements in this vector is determined
using the information on the neighborhood of each sensor.

The actions of the input program are executed whenever a timer fires. Once
the sensor executes each action for which the corresponding guard is enabled,
it marshals all the public variables as a message wacMsg and schedules it for
transmission (broadcast). Depending on the transformation algorithm and MAC
layer selected by the user, it configures when the timer fires and how wacMsg is
transmitted. For example, in case of a TDMA based transformation (e.g., [3]),
ProSe configures the timer to fire in every TDMA slot assigned to the sensor.
And, it uses a TDMA service (e.g., [13]) to broadcast the message. In case of
a CSMA based transformation (e.g., [4]), ProSe configures the timer to fire in
a random interval whenever it receives a message containing values of public
variables at the sender. And, it uses a CSMA service (e.g., [14]) to broadcast
wacMsg.

The nesC code segment for Timer.fired() event of the MA X program obtained
using the TDMA based transformation from [3], where SS-TDMA service [13]
is used to implement the write-all action, is shown as follows. (The function
getNoOfNbrs() returns the number of neighbors of the given sensor.)

1 event result_t Timer.fired() {

2 uint8_t i, msgSizelnBytes;

3 if (sendDone == TRUE) {

1 for(i = 0; i < getNoOfNbrs(); i++)

5 if ((copy_x[i] > x_j)) x_j = copy_x[il;

6 wacMsg.datal[0] = x_j; wacMsg.data[l] = (x_j >> 8);
7 sendDone = FALSE;

8 msgSizeInBytes = 2;

9 call SSTDMA.send(msgSizeInBytes, &wacMsg);

10 }
11 return SUCCESS;
12 }

Similarly, ProSe generates code for updating the copy vectors whenever it
receives a WAC message from one of its neighbors. Finally, ProSe also gener-
ates code for initialization. Specifically, it generates code to (1) initialize all the
program variables, (2) configure network services (e.g., TDMA, CSMA), and (3)
configure and start middleware services (e.g., Timer).

3.3 Execution of ProSe

In this section, we discuss (1) how the input guarded commands are translated
into nesC code and (2) how the sensors maintain the state of their neighbors.
ProSe generates three files: configuration file, module file, and a makefile.
Figure 3 shows how ProSe generates different files from the input program and
topology information; these files are required to generate the TinyOS binary.

program p, configuration file pC.nc,
computation model, implementation file pM.nc,

topology filet Developer of a makefile
sensor network protocol

ProSe-User interaction@ Transformation algorithm, MAC layer, etc

varlablesasamessagem |—
and schedule send(m) !

p l T pC.nc p 1 T makefile
Configuration File Makefile
i Wire pM.nc with other Create makefile for
Ipnc();t?éﬂ qutaIlon required components building pC.nc pM.nc

Implementation File [ttt s
777777777777777777 ! Actions ! | Receiving WAC M essages !
i Initialization i | Step 4: for each action, g -> o i j:} Step 7- generate code i
'| Step 1: identify public: | | | Step 4a create guard 1|1 Lfor receive(m !
'Land private variables :} instances for neighbors | ! !
! 11| if ghasnon-local variable(s) 1|\ ['step 8: identify index] |
[Step 2: create copy |1~ : Quantified over neighbors '|! | ndx in copy vectors | !
| vectors for public |1 1|1 Lfor sender ;
'Lvariables '|i | | Step 4b: for each guard an [!
! |1 | instance: create nesC code | 1| Step 9: update copy | |
[Step 3: generate codel | | : for st, substituting the '|' | vectorsat ndx with | !
!| for StdControl.init(), [| | : @Ppropriate value(s) for '|! | appropriate values | !
| StdControl.start() " |1 | | : uantifier(s) |1 Liromm !

: Step 5: generate codefor | | Auilary Functions 1 77777 !

! Timer.fired() with actions 3 3 Step 10 generate codd 3

! 1|1 Lfor auxillary functions |

' | Step 6: marshall al public | |||

Fig. 3. Execution sequence of ProSe

Configuration file. Configurations wire components together, connecting in-
terfaces used by components to interfaces provided by others [5]. ProSe generates
pC.ne, given the input guarded command program p. Specifically, pC.nc wires
the module file, pM.nc, network services (e.g., TDMA, CSMA, etc), and other
interfaces required by the module.

Module file. Modules provide the application code and implement one or
more interfaces [5]. ProSe generates the implementation file pM.nc, given the
input guarded command program p, as follows (cf. Figure 3).

Steps 1-3: Initialization. First, ProSe identifies the public and private variables
of the input program. Next, for each public variable, it generates a copy vector
(containing entries for all the neighbors of a sensor). Subsequently, it generates
the code for (i) initializing these variables, (ii) initializing other components (e.g.,
TDMA, CSMA, Timer, etc), and (iii) starting network and middleware services
(e.g., TDMA, CSMA, Timer). In case of a TDMA based transformation, ProSe
sets the Timer to fire during the TDMA slots assigned to the sensor. A sensor
executes each action for which the corresponding guard is enabled whenever this
timer fires.

Steps 4-6: Actions. ProSe generates the nesC code for the actions specified
in the input program in Timer.fired() event. For each action g — st, first, it
determines if the guard g has any non-local variables (e.g., process j accessing
public variable z.k of process k in the MAX program). If g contains no non-local
variables, it generates the corresponding nesC code of the form if(g){st; }.

If g has non-local variables, ProSe proceeds as follows. For each non-local
variable, it generates guard instances for each neighbor. For example, in MAX,
it generates copy-z[0] > z_j, copy-z[l] > z_j, copy-z[2] > x_j, and copy-z[3]
> x_j, where j has 4 neighbors. If the index to a non-local variable is a lo-
cal variable, ProSe generates a single guard instance for the neighbor identi-
fied by the index. For example, if g is of the form z.(p.j) > x.j, it generates
copy-z/getCopy VectorIndexz(p-j)] > z—j, where getCopyVectorIndex(p-j) identifies
the index of p_j to the copy vectors. Now, for each guard instance g’ (of g) with
only local variables, ProSe generates the nesC code of the form i f(g"){st; }.

Once the code for all actions are generated, ProSe generates code for im-
plementing the write-all action. Towards this end, first, it marshals all public
variables into a message. Then, it uses the MAC layer selected by the user to
schedule transmission of the message.

Steps 7-9: Receiving WAC messages. ProSe generates code for updating the
copy vectors whenever it receives a message. Towards this end, ProSe generates
code for determining the sender of the message and the index of the sender to the
copy vectors (using getCopy VectorIndez(sender)). Once the index is identified,
the values of the public variables of the sender are updated in the correspond-
ing copy vectors. Thus, each sensor maintains up-to-date values of the public
variables of the neighbors. Furthermore, in case of CSMA based transformation,
ProSe sets the timer to fire in a random interval whenever it receives a WAC

message. A sensor executes each action for which the corresponding guard is
enabled whenever this timer fires.

Steps 10-11: Auziliary functions. Finally, ProSe adds the code for all auxiliary
functions (e.g., getCopyVectorIndex(neighbor), getNoOfNbrs(), etc).

Makefile. To facilitate quick compilation and deployment, ProSe generates
the makefile for building the TinyOS binary of the generated code.

Thus, ProSe provides the designer with the different files required for building
and deploying the new binary image.

4 Evaluation: Manual Design Vs. Generated Programs

In this section, we study the performance of the programs generated by ProSe
with respect to related programs designed manually for sensor networks, using an
example. We consider a variation of balanced routing program [16]. We use ProSe
to generate code for this program and experimentally analyze the performance
of the generated program.

Modified version of balanced routing program. In this program, sensors
are arranged in a logical grid. A routing tree is dynamically constructed with the
base station as the root. The base station is located at (0,0) of the logical grid.
Each sensor classifies its neighbors as high or low neighbors depending on their
(logical) distance to the base station. Also, each sensor maintains a variable,
called inversion count. The inversion count of the base station is 0. If a sensor
chooses one of its low neighbors as its parent, then it sets its inversion count to
that of its parent. Otherwise, it sets its inversion count to inversion count of its
parent + 1. Furthermore, to deal with the problem of cycles in the routing tree,
if the inversion count exceeds a certain threshold (CM AX), the sensor removes
itself from the tree.

In this program, each sensor (say, j) maintains three public variables: (i)
inv.j, the inversion count of j, (ii) dist.j, the (logical) distance of j to the base
station, and (iii) up.j, the status variable for j (indicates whether j has failed
or not).! Whenever j finds a low/high neighbor that provides a better path (in
terms of inversion count, inv.j) to the base station, it updates its private variable,
p.j, the parent of j, and inversion count inv.j. The routing tree construction
actions are specified in read/write model as follows. (Note that we present only
the actions of the routing program below. For brevity, we drop the keywords
program, process, variable declarations, begin, end, etc.)

1 Routing tree construction actions
2 ((dist.k < dist.j) && (up.k == TRUE) && (inv.k < CMAX)

! In this program, whenever a sensor fails, it notifies its neighbors. In practice, this
action is implemented as follows. Whenever a sensor fails to read its neighbors (in
shared-memory or read/write model) or receive update from its neighbors (in WAC
model), for a threshold number of consecutive attempts, it declares that neighbor as
failed. Thus, detecting whether sensors have failed is hidden from the designer.

3 && (inv.k < inv.j)) // low neighbor

4 ->p.j =k; inv.j = inv.k;

5

6 ((dist.k >= dist.j) && (up.k == TRUE) && (inv.k+1 < CMAX)
7 && (inv.k+1 < inv.j)) // high neighbor

8 ->p.j = k; inv.j = inv.k+1;

Whenever a sensor fails or inversion count of a sensor exceeds CM AX, the
routing tree changes. Towards this end, we need routing tree maintenance or
stabilization actions. These actions are specified (in read/write model) as follows.

1 Routing tree maintenance or stabilization actions

2 // parent failed

3 ((p.j '= NULL) && (up.(p.j) == FALSE))

4 -> p.j = NULL; inv.j = CMAX;

5| // inversion count of p.j exceeds threshold

6 ((p.j !'= NULL) && (inv.(p.j) >= CMAX))

7 -> p.j = NULL; inv.j = CMAX;

s| // inversion count is not consistent with p.j (low neighbor)

o ((p.j '= NULL) && (dist.(p.j) < dist.j) && (inv.j '= inv.(p.j)))
10 -> p.j = NULL; inv.j = CMAX;

11| // inversion count is not consistent with p.j (high neighbor)
12 ((p.j '= NULL) && (dist.(p.j) >= dist.j) && (inv.j !'= inv.(p.j)+1))
13 -> p.j = NULL; inv.j = CMAX;

14| // j is not in tree and inversion count is not CMAX
15 ((p.j == NULL) &% (inv.j < CMAX))
16 -> p.j = NULL; inv.j = CMAX;

Thus, the routing program is specified in read/write model while hiding low-
level details. Now, we can use ProSe to generate the corresponding nesC/TinyOS
implementation and subsequently construct the binary image.

Experimental evaluation of program generated by ProSe. We use
the TDMA based transformation from [3] to transform the above routing pro-
gram into WAC model. Towards this end, we use SS-TDMA [13] to implement
the write-all action. We deployed the code generated by ProSe on 3x3 and 5x5
XSM [2] networks, where the inter-sensor separation is 8 ft. In our experiments,
the period between successive slots assigned to a sensor is 1.95 seconds. We kept
this value intentionally high in order to reduce the frequency of execution of
actions. After the initial routing tree is constructed, we fail some sensors (si-
multaneously) to determine how the sensors converge to a new routing tree and
measure the convergence time. In case of a 3x3 (respectively, 5x5) network, we
fail 2 (respectively, 7) sensors. The results of these experiments are presented in
Table 1.

Figure 4 shows the initial routing tree and the converged routing tree (after
sensors fail) on a 5x5 XSM network, where one of the sensors fail at the start of
the experiment. After the initial routing tree is constructed (cf. Figure 4(a)), we
fail sensors 3, 6, 8, 10, 17, 18, and 20 simultaneously. The sensors then converge
to the new routing tree (cf. Figure 4(b)) within 21 seconds.

Table 1. Performance of routing program generated by ProSe

Network size|No. of failed sensors|Convergence time
3x3 2 4s
5x5 7 21s

OO0

Fig. 4. Routing tree construction and maintenance on a 5x5 network with
base station (filled circle) at the top-left corner. (a) initial routing tree
and (b) converged tree after failure of some sensors (shown in gray circles)

The convergence time of the routing program generated by ProSe is within
the acceptable performance guidelines of a typical sensor network application
(e.g., [17,18]). Also, the above results are comparable to routing programs de-
signed manually for sensors networks (e.g., [19]). We experimentally computed
the convergence time with MintRoute [19] and found it to be approximately the
same. In such manually designed programs, the designer has to deal with all
the low-level details of sensor networks. However, in the programs generated by
ProSe, the transformation algorithm and the tool deal with these issues and,
hence, the designer can focus only on the functionality of the program.

Based on this illustration, we expect that the programs generated by ProSe
are comparable with respect to related programs designed manually. In order to
quickly prototype applications, it is preferable that the designers use this tool
to test existing algorithms in the context of sensor networks. If the performance
of the prototype generated by ProSe meets the application requirements, the
designer can choose to use the generated prototype. Otherwise, the designer
can improve this prototype instead of designing from scratch. Thus, our tool
enables the transition where protocols are designed by domain experts rather
than experts in sensor networks. With this feature, designers can significantly
reduce the development time of a typical sensor network application.

5 Discussion

In this section, we discuss some of the questions raised by this work.

Other services for sensor networks. We have used ProSe to generate
sensor network binaries for (1) network services such as routing (e.g., [16]), dif-
fusing computation (e.g., [20]), leader election (e.g., [21,22]) and spanning tree
construction (e.g., [11,21]), (2) distributed reset service [23] to reset the state
of the network to a consistent global state, and (3) tracking service to monitor
the activities of mobile targets in a sensor network field (e.g., [24]). These pro-
grams are specified in abstract models (e.g., shared-memory model, read/write
model). ProSe transformed them into WAC model and generated the correspond-
ing nesC/TinyOS code. Thus, ProSe can be effectively used in automating the
process of code generation and deployment of services for sensor networks.

Preserving fault-tolerance/self-stabilization properties. Properties such
as fault-tolerance and self-stabilization are important in sensor networks. Specif-
ically, since sensor networks are deployed in large numbers and in inaccessible
fields, the network should be able to self-stabilize [10,11] in presence of faults
(e.g., message corruption, message losses, synchronization errors, etc). Towards
this end, ProSe preserves the fault-tolerance and self-stabilization properties of
the program in WAC model. Additionally, if the algorithm used in transforming a
program (in shared-memory or read/write model) into a program in WAC model
preserves the properties of interest then ProSe also preserves such properties.
Existing transformations [3,4] preserve the fault-tolerance and self-stabilization
properties of the programs in shared-memory or read/write models.

Dealing with faults in sensor networks. The normal operation of a typi-
cal sensor network is affected by (1) failure of sensors, (2) state corruption, and
(3) message losses. To deal with these problems, ProSe provides abstractions to
the designer of a sensor network protocol. First, ProSe provides the abstraction
which allows a sensor (say, j) to determine whether its neighbor (say, k) is alive
or failed. Towards this end, in the input program, sensor j can just access the
public variable up.k; if up.k is true (respectively, false) then k is alive (respec-
tively, failed). However, in the code generated by ProSe, the logic for determining
whether a sensor is alive or not is as follows. If j fails to receive update messages
(i.e., WAC messages) for a pre-determined time interval from its neighbor k,
then j declares k as failed. Thus, the designer can abstract sensor failures using
the up variables (cf. Section 4 for an example).

As discussed earlier, we note that ProSe preserves the properties of the in-
put program in WAC model. If the original program self-stabilizes [10,11] to
legitimate states (from state corruption) and the transformation preserves this
property then the code generated by ProSe also preserves this property. More-
over, with this approach, the designers can model malicious sensors. Finally,
regarding message losses, the transformation algorithm should ensure that each
sensor updates their state at their neighbors every pre-determined time interval.
This ensures that the sensors have the current values of the public variables of
their neighbors. Thus, ProSe deals with faults in sensor networks.

6 Related Work

Related work that deals with programming abstractions include [25-28] and tools
for programming sensor networks include [29-36].

Programming abstractions. In [25], a state centric approach is proposed
that captures algorithms such as sensor fusion, signal processing and control.
This model views the network as a distributed platform for in-network process-
ing. Furthermore, in this model, the abstraction of collaboration groups hides
the designer from issues such as communication protocols, event handling, etc.
In [26, 27], macroprogramming primitives that abstract communication, data
sharing and gathering operations are proposed. These primitives are exposed
in a high-level language. However, these primitives are application-specific (e.g.,
abstract regions for tracking and gathering [26] and region streams for aggrega-
tion [27]). In [35], an intermediate language (called, token machine language)
for programming sensor networks using these primitives is proposed. Unlike
the state centric programming model [25] and the macroprogramming primi-
tives [26,27,35], ProSe only hides low-level details such as message collisions,
message corruption, sensor failures, etc. As a result, with ProSe, the designer
has more freedom to develop network protocols (e.g., clustering, leader election,
routing, etc) that provide the desired results. Additionally, ProSe facilitates rapid
prototyping by allowing designers to reuse existing algorithms.

In [28], semantic services programming model is proposed where each service
provides semantic interpretation of the raw sensor data or data provided by other
semantic services. In this model, users only specify the end goal on what semantic
data to collect. Thus, users make less low-level decisions on which operations to
run or which data to run them over. However, semantic services model does not
capture all sensor network protocols. For example, network protocols such as
routing, clustering, leader election, etc, do not fit in this model. Additionally,
users are limited by the services available in the network. By contrast, ProSe is
generic, i.e., it can be used to specify wide variety of sensor network protocols
(e.g., routing, leader election, distributed reset, tracking, etc). Moreover, unlike
[28], ProSe does not restrict the designer to implement the desired services.

Programming tools. In [29-34], virtual machine, database, or middleware
based programming models are proposed. Specifically, (1) in [29], a virtual ma-
chine based approach (called Maté) is proposed for programming and adapting
sensor network applications, (2) in [30], an object-based distributed middleware
service (called EnviroTrack) with interfaces to application developer is proposed,
especially for environment monitoring, (3) in [31], a sensor network application
construction kit (SNACK) that includes a configuration language and a library
of services is proposed to simplify construction of sensor network applications,
(4) in [32], a self-explanatory, easy to configure/maintain interface (called TASK)
to sensor network deployment is proposed, (5) in [33], database query-link inter-
face, called TinyDB, is proposed for designing sensor network applications, and
(6) in [34], mobile agents are used to specify application tasks.

However, the approaches in [29-34] are (i) application-specific, and/or (ii)
restrict the designer to what is available in the virtual machine, middleware,
library, or network. By contrast, ProSe provides a simple abstraction while al-
lowing the designer to specify wide variety of protocols.

In [36], macroprogramming model, called Kairos, that hides the details of
code-generation and instantiation, data management, and control is proposed.
Kairos provides the programmer with three abstractions; (i) node-level abstrac-
tion that allows the programmer to manipulate nodes and list of nodes, (ii)
one-hop neighbor list abstraction for performing operations on the neighbor list,
and (iii) remote data access that allows a sensor to read the named sensors. Thus,
it allows one to specify the desired global behavior in a centralized model. While
ProSe provides similar abstractions, it differs from Kairos. Specifically, unlike
Kairos, ProSe only hides low-level details such as message collisions, corruption,
sensor failures, etc. Moreover, ProSe does not require any runtime support in
the generated sensor network binary. Additionally, unlike Kairos, ProSe enables
reuse of existing algorithms and also preservers fault-tolerance properties of the
input program.

7 Conclusion

In this paper, we presented a tool, called ProSe, for programming sensor net-
works. ProSe simplifies the construction and deployment of sensor network pro-
tocols. Specifically, ProSe (1) hides the low-level details (e.g., message colli-
sions, sensor failures, limited memory, etc) of sensor networks from the designer,
thereby enabling the designer to focus only on the functionality of the protocol,
(2) allows reuse of existing algorithms considered in distributed systems and
traditional networking in the context of sensor networks, (3) preserves the prop-
erties (e.g., self-stabilization, fault-tolerance) of the program in WAC model, (4)
reduces the development time of a sensor network protocol, thereby enabling the
designer to rapidly prototype and quickly deploy sensor network applications,
and (5) automates the process of code generation and deployment. Furthermore,
ProSe is extensible in that developers of transformation algorithms and MAC
protocols can easily integrate new transformations and communication services
in ProSe without a significant overhead.

We expect that the performance of programs generated by ProSe are compa-
rable with respect to related programs designed manually. Hence, it is preferable
that the designers use ProSe to test existing algorithms in sensor networks.
If the performance of prototype generated by ProSe meets application require-
ments, the designer can choose to use the prototype. Otherwise, the designer can
improve the prototype generated by ProSe instead of designing from scratch.
Thus, ProSe enables the transition where protocols are designed by domain
experts rather than experts in sensor networks. We demonstrated this by gen-
erating nesC/TinyOS code for the balanced routing program [16] specified in
read/write model. Furthermore, we have generated sensor network binaries for
network protocols (e.g., [20-22]), distributed reset [23], and tracking [24].

There are several possible future directions to this work. While ProSe can
generate programs that can be deployed on a sensor network, it is expected that
sensor network applications be composed of several protocols. Towards this end,
one future direction is to extend ProSe to compose several protocols together.
Specifically, ProSe should prioritize the public variables that are transmitted
(i.e., broadcasted) and ensure that the composition is correct. Another future
direction is to integrate ProSe with (i) tools that automatically synthesize fault-
tolerance properties (e.g., [37]) and (ii) tools that formally verify (input and
transformed) programs (e.g., model checkers).

References

1. J. Hill and D. Culler. Mica: A wireless platform for deeply embedded networks.
IEEE Micro, 22(6):12—24, 2002.

2. P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless
sensor network platform for detection rare, random, and ephemeral events. In
Proceedings of the Conference on Information Processing in Sensor Networks, 2005.

3. S. S. Kulkarni and M. Arumugam. Transformations for write-all-with-collision
model. Computer Communications (Elsevier), 2005, in press. Available at: http:
//www.cse.msu.edu/"sandeep/publications/ka05COMCOM/.

4. T. Herman. Models of self-stabilization and sensor networks. In Proceedings of the
5th International Workshop on Distributed Computing (IWDC), 2003.

5. D. Gay, P. Levis, R. voh Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In Proceedings of
Programming Language Design and Implementation (PLDI), June 2003.

6. TinyOS: A component-based OS for the networked sensor regime. http://www.
tinyos.net.

7. S. S. Kulkarni and L. Wang. MNP: Multihop network reprogramming service for
sensor networks. In Proceedings of the International Conference on Distributed
Computing Systems (ICDCS), June 2005.

8. S. S. Kulkarni and M. Arumugam. Infuse: A TDMA based data dissemination
protocol for sensor networks. Technical Report MSU-CSE-04-46, Department of
Computer Science, Michigan State University, November 2004.

9. J. Hui and D. Culler. The dynamic behavior of a data dissemination protocol
for network programming at scale. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (SenSys), November 2004.

10. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11), 1974.

11. S. Dolev. Self-Stabilization. The MIT Press, 2000.

12. E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1997.

13. S. S. Kulkarni and M. Arumugam. SS-TDMA: A self-stabilizing MAC for sensor
networks. In Sensor Network Operations. IEEE Press, 2005.

14. A. Woo and D. Culler. A transmission control scheme for media access in sensor
networks. International Conference on Mobile Computing and Networking, 2001.

15. T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher. Range-free localiza-
tion schemes for large scale sensor networks. In Proceedings of the International
Conference on Mobile Computing and Networking (MobiCom,), pages 81-95, 2003.

16. J. A. Cobb and M. G. Gouda. Balanced routing. In Proceedings of the International
Confernece on Network Protocols (ICNP), pages 277-284, October 1997.

17

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A. Arora et al. A line in the sand: A wireless sensor network for target detection,
classification, and tracking. Computer Networks (Elsevier), 2004.

A. Arora et al. ExScal: Elements of an extreme scale wireless sensor network. In
Proceedings of the International Conference on Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), August 2005.

A. Woo and D. Culler. Taming the challenges of reliable multihop routing in sensor
networks. ACM Conference on Embedded Networked Sensor Systems, 2003.

A. Arora, M. Gouda, and G. Varghese. Constraint satisfaction as a basis for
designing nonmasking fault-tolerance. Journal of High Speed Networks, 1996.

N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems, 8(4):424-440, April 1997.
A. Arora and M. Gouda. Distributed reset. IEEE Transactions on Computers,
43(9):1026-1038, 1994.

M. Demirbas, A. Arora, and M. Gouda. A pursuer-evader game for sensor networks.
In Proceedings of the Symposium on Self-Stabilizing Systems, June 2003.

J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-centric programming for
sensor-actuator network systems. Pervasive Computing, 2003.

M. Welsh and G. Mainland. Programming sensor networks using abstract regions.
Symposium on Networked Systems Design and Implementation (NSDI), 2004.

R. Newton and M. Welsh. Region streams: Functional macroprogramming for
sensor networks. Workshop on Data Management for Sensor Networks, 2004.

K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: A framework for declarative
queries and automatic data interpretation. Technical Report MSR-TR-2005-45,
Microsoft Research, April 2005.

P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, 2002.

T. Abdelzaher et al. EnviroTrack: Towards an environmental computing paradigm
for distributed sensor networks. In Proceedings of the International Conference on
Distributed Computing Systems (ICDCS), 2004.

B. Greenstein, E. Kohler, and D. Estrin. A sensor network application construction
kit (snack). ACM Conference on Embedded Networked Sensor Systems, 2004.

P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and S. Madden. TASK: Sensor
network in a box. Furopean Workshop on Wireless Sensor Networks, 2005.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An acquisitional
query processing system for sensor networks. ACM Transactions on Database
Systems (TODS), 30(1):122-173, 2005.

C-L. Fok, G-C. Roman, and C. Lu. Rapid development and flexible deployment
of adaptive wireless sensor network applications. International Conference on Dis-
tributed Computing Systems, 2005.

R. Newton, Arvind, and M. Welsh. Building up to macroprogramming: An interme-
diate language for sensor networks. In Proceedings of the International Conference
on Information Processing in Sensor Networks (IPSN), April 2005.

R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor
networks using kairos. In Proceedings of the International Confernece on Dis-
tributed Computing in Sensor Systems (DCOSS), June-July 2005.

S. S. Kulkarni and A. Ebnenasir. A framework for automatic synthesis of fault-
tolerance. Technical Report MSU-CSE-03-16, Department of Computer Science,
Michigan State University, July 2003.

